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Abstract

Cross-domain recommendation (CDR) methods achieve
success in disentangling user preferences into domain-
specific and domain-shared parts. However, recent re-
search has shown that isolated domain-specific prefer-
ence limits performance improvements. In this paper,
we propose a new CDR framework, called CausalCDR,
which identifies the limitations of existing methods and
addresses existing issues. CausalCDR consists of two
views: the causal view and the generative view. The
causal view incorporates causality of variables into the
CDR scenario, while the generative view implements
the causal view by modeling the joint distribution of
user interaction via encoding, causal, and generation
stage. To optimize CausalCDR, we re-derive the Evi-
dence Lower Bound (ELBO) and introduce a mutual in-
formation regularizer and an adversarial classifier. We
evaluate CausalCDR on four real-world CDR scenar-
ios and demonstrate its effectiveness in improving CDR
performance. Keywords: Cross-domain recommenda-
tion, Causal Inference, Variational Inference

1 Introduction

Recommendation systems have been applied in various
practical application areas such as entertainment and
e-commerce [23, 43]. However, conventional recommen-
dation methods suffer from issues such as cold start and
data sparsity [7, 28]. As a result, cross-domain recom-
mendation (CDR) has gained significant attention from
both academia and industry [5, 52].

Motivated by disentangled embedding learning [8,
47], recent studies [3, 41] have attempted to disentan-
gle domain-specific and domain-shared embedding from
the user embedding. By identifying common preferences
across domains, sharing embedding links the different
domains and contributes to performance increase. How-
ever, while disentanglement methods have shown out-
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standing performance, they typically focus only on the
domain-shared preference among domains, which leaves
domain-specific preferences isolated between domains.

Figure 1(a) illustrates an example for the
Phone&Clothing scenario. In this scenario, there are
domain-shared preferences for features like ”Price” in
both domains, as well as domain-specific preferences for
features such as ”Processor” and ”Battery” for Phone
and ”Appearance” and ”Materials” for Clothing. We
have discovered that user groups exhibit similar be-
havior not only in domain-shared preferences but also
in domain-specific preferences [9, 22]. For instance, a
younger consumer group tends to purchase phones with
moderate price, high-performance processors and nor-
mal battery capacity, as well as clothes with moder-
ate price, stylish appearance and arbitrary materials.
Similarly, a more mature consumer group tends to pur-
chase phones with lower prices, normal processors, and
large battery capacity, as well as clothes with lower
prices, stylish appearance, and firm materials. Both
the domain-shared preference and domain-specific pref-
erence have the implicit link between domains. Unfor-
tunately, existing methods fail to recognize the link be-
tween domain-specific preferences.

To address the above issue, we propose a novel CDR
framework called CausalCDR (Causal embedding learn-
ing for Cross-Domain Recommendation). In Causal-
CDR, we build modes from two views: causal view and
generative view. The causal view incorporates causal-
ity modeling into the CDR scenario for domain x and
y. As illustrated in Figure 1(b), user preference is dis-
entangled into domain-shared, US , and domain-specific
preference, Ux, Uy. To tackle the isolated preference is-
sue, we model a common cause of domain-shared and
domain-specific preference, the user profile information
Z. Specifically, the domain-shared preference represents
the common preference across domains that are only in-
fluenced by individual user profile. Therefore, no matter
how the domain changes, the domain-shared preference
will remain consistent. On the other hand, the domain-
specific preference is influenced by both the user pro-
file and the domain information denoted by Dx or Dy,
changing as the domain shifts.
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(b) Causal View(a) Toy example
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Figure 1: (a): An example of domain-shared preference and domain-specific preference. (b): Causal View of
proposed CausalCDR. (c): Generative View of proposed CausalCDR

To learning embeddings for variables modeled in the
causal view, we build model from a generative view illus-
trated in Figure 1(c) following VAE framework [16,46].
The generative view models the joint distribution of user
interaction on two domains through three stages: en-
coding stage, causal stage and generation stage. The
encoding stage estimates the posterior distribution to
obtain the initial hidden embeddings zxu and zyu of user
interaction Xu and Yu. The causal stage decomposes
the posterior according to the causal view and conducts
causal inference to infer the user causal embeddings exu,
eyu and eSu . The generation stage estimates the condi-
tional joint distribution to generate user interaction Xu

and Yu via the causal embeddings.
To further optimize the proposed method, Causal-

CDR re-derives the Evidence Lower Bound (ELBO) and
introduces a mutual information regularizer and an ad-
versarial domain classifier. The regularizer aims to max-
imize the mutual information between profile embed-
ding and initial hidden embedding to facilitate the learn-
ing of user profile. The domain classifier encourages the
disentanglement of domain-specific and domain-shared
features of items.

We conduct extensive experiments on four real-
world CDR scenarios, demonstrating that CausalCDR
outperforms existing CDR methods. Additionally, ab-
lation studies validate the effectiveness of CausalCDR’s
components.

Our contributions can be summarized as follows:
(1) We investigate existing CDR methods and identify
the problem of isolated specific preference. (2) To tackle

this issue, we propose a new CDR framework called
CausalCDR, consisting of causal view and generative
view. The causal view model incorporates causality into
the CDR scenario, while the generative view implements
causal view by modeling the joint distribution of user
interaction. (3) Furthermore, we re-derive the Evidence
Lower Bound (ELBO), and propose a mutual informa-
tion regularizer and an adversarial domain classifier to
optimize our proposed method. (4) Extensive exper-
iments on four real-world CDR scenarios demonstrate
that CausalCDR outperforms existing CDR methods.

2 CausalCDR

In this section, we provide a detailed description of
CausalCDR from both the causal and generative views.
The causal view identifies causality in the CDR scenario,
while the generative view models the joint distribution
of interactions to implement the causal view. To opti-
mize the proposed method, we re-derive the Evidence
Lower Bound (ELBO), and introduce a mutual infor-
mation regularizer and an adversarial domain classifier.

2.1 Causal View In the causal view, we model
the interaction generation process and formulate CDR
through a causal graph illustrated in Figure 1(b). The
dotted circle indicates unobserved variables. The mean-
ings of nodes and edges are detailed as follows:

• X and Y represent user interactions on domains
x and y, respectively.

• Ux, Uy, and US represent x-specific preference
(e.g., preference for Processor, Battery in Phone do-
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main), y-specific preference (e.g., preference for Ap-
pearance, Materials in Clothing domain), and domain-
shared preference (e.g., preference for Price in both
Phone and Clothing domain) respectively.

• Z represents the general user profile informa-
tion(e.g., age, gender).

• Dx and Dy represent domain information for
domains x and y respectively.

• Ix and Iy represent items for domains x and y
respectively.

• (Ux, US , Ix) → X and (Uy, US , Iy) → Y denote
that user interaction on each domain (x or y) is de-
termined by both domain-specific and domain-shared
preference, as well as items of each domain.

• (Dx, Z) → Ux and (Dy, Z) → Uy indicate that
domain-specific preference is determined by both user
profile and domain information, leading to changes
following domain shifts.

• Z → US indicates that domain-shared preference
is solely determined by the user profile. There is no
causal link between domain-shared preference and do-
main information. Therefore, no matter how the do-
main changes, the domain-shared preference will remain
consistent.

Overall, the causal view provides a comprehensive
understanding of the interaction generation process and
the causal relationships among user preference, domain
information, and user profile in CDR.

2.2 Generative View Due to the unobserved vari-
ables, it is difficult to infer the causality directly through
the observed variables. Therefore, we adopt the prin-
ciples of variational inference [16, 46] to build a gen-
erative view for implementation. In generative view,
we formulate the CDR problem, derive a tractable log-
likelihood, and implement the probabilistic estimators
through neural networks.

2.2.1 Problem Formulation for CDR Let Ux be
the set of users in domain x and Uy be the set of users in
domain y. We assume that Ux = Uy = U , which means
that every user u in the user set U has interactions on
both domains x and y. Let Ix be the set of items in
domain x and Iy be the set of items in domain y. We
assume that Ix ∩ Iy = ∅ to satisfy the cross-domain
scenario. The interaction vectors of user u are denoted
by Xu ∈ R|Ix| and Yu ∈ R|Iy|. Thus, the dataset O is
composed of |U| users of the form (u,Xu, Yu).

2.2.2 Generative View As illustrated in Figure
1(c), the generation view of the model composes of three
stages:

Encoding stage: Encoding the interaction vectors
Xu and Yu to obtain their initial embeddings zxu ∈ Rm

and zyu ∈ Rm respectively.
Causal stage: Conduct causal inference to obtain

the disentangled causal embeddings exu, eyu, and eSu .
According to the causal graph shown in Figure 1(b), we
first disentangle both domains’ interaction embeddings
zxu and zyu to user’s profile embedding zu. User’s domain-
share preference eSu ∈ Rm/2 is inferred directly from zu,
where m denotes the vector size, as it is independent
of domain information. Domain-x-specific preference
exu ∈ Rm/2 is inferred based on zxu, zu, and domain
embedding dx ∈ Rm. Similarly, domain-y-specific
preference eyu ∈ Rm/2 is inferred based on zyu, zu, and
domain embedding dy ∈ Rm.

Generation stage: Reconstruct the interaction
Xu and Yu using causal embeddings exu, e

y
u, and eSu .

To construct the generative view, we first provide
a probabilistic formulation for the joint distribution
p(Xu, Yu|dx, dy). For a sample (u,Xu, Yu) from the
dataset O, we consider the initial embeddings zxu, z

y
u,

the profile embedding zu and the causal embeddings exu,
eSu , e

y
u as latent variables, with the domain information

dx and dy as conditions. Specifically, we consider the
following conditional generative model:

p(Xu, Yu|dx, dy)

=

∫
p(Xu, Yu|dx, dy, zxu, zyu, zu, exu, eSu , eyu)

dzxu, z
y
u, zu, e

x
u, e

S
u , e

y
u(2.1)

To derive the tractable approximation of Equa-
tion 2.1, we introduce a variational distribution
q(zxu, z

y
u, zu, e

x
u, e

S
u , e

y
u|Xu, Yu, dx, dy). The generative

view solves for both the joint distribution and variational
distribution. In generation stage, the joint distribution is
decomposed into:

p(zxu, z
y
u, zu, e

x
u, e

S
u , e

y
u, Xu, Yu|dx, dy)

=pθx(Xu|exu, eSu)pθy (Yu|eyu, eSu)

p(zxu, z
y
u, zu, e

x
u, e

S
u , e

y
u|dx, dy)(2.2)

where θx, θy denote the parameters of decoders respec-
tively. After decomposing, the joint distribution is di-
vided two parts: decoders pθx , pθy and prior distribution
p(zxu, z

y
u, zu, e

x
u, e

S
u , e

y
u|dx, dy). We define the prior distribu-

tion based on the causal view:p(zxu, z
y
u, zu, e

x
u, e

S
u , e

y
u|dx, dy)

=p(exu|zxu, zu, dx)p(eyu|zyu, zu, dy)p(eSu |zu)
p(zu|zxu, zyu)p(zxu|dx)p(zyu|dy)(2.3)

In the encoding stage, the variational distribution is decom-
posed into:

q(zxu, z
y
u, zu, e

x
u, e

S
u , e

y
u|Xu, Yu, dx, dy)

=qψx(z
x
u|Xu)qψy (zyu|Yu)

qψC (zu, e
x
u, e

S
u , e

y
u|zxu, zyu, dx, dy)(2.4)

where ψx, ψy are the parameters of encoders and ψC

denotes the parameter of causal stage. Similarly, after
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2

(c) Causal stage

(a) Generation stage
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Figure 2: Implementation: (a): Generation Stage. (b):
Encoding Stage. (c): Causal Stage.

decomposition, the posterior distribution is divided into
two parts: encoders qψx , qψy , and posterior distribution
qψC (zu, e

x
u, e

S
u , e

y
u|zxu, zyu, dx, dy).

To bridge the gap between the generation stage and
encoding stage and to generate disentangled causal embed-
dings, we designed the causal stage based on the causal re-
lationship of variables. As shown in Figure 1(c), we assume
that there is no relationship between nodes without an edge.
Thus, the posterior distribution can be decomposed into:

qψC (zu, e
x
u, e

S
u , e

y
u|zxu, zyu, dx, dy)

=qψCx (e
x
u|zxu, zu, dx)qψCy (e

y
u|zyu, zu, dy)

qψC
S
(eSu |zu)qψCz (zu|z

x
u, z

y
u)(2.5)

where ψC = {ψCz , ψCx , ψCy , ψCS }.

2.2.3 Implementation After decomposing the joint
distribution and variational distribution, we give the imple-
mentation of the proposed generative view.

Generation Stage. The interaction vectorsXu and Yu
are assumed to follow multinomial priors [33]. Specifically,
Xu and Yu are modeled as:

Xu ∼Mult(|Ix|,Φ(fθx(exu, eSu))),

Yu ∼Mult(|Iy|,Φ(fθy (eyu, eSu)))(2.6)

Here, Φ(·) denotes the sigmoid function to normalize the
output fθ. We implement the function fθx and fθy using
Matrix Factorization [13]. As illustrated in Figure 2(a), the
interaction vectors are generated as:

Xu = (exu||eSu) · (exix: ||eSiy:)T ,

Yu = (eyu||eSu) · (eyiy: ||e
S
iy:)

T(2.7)

Here, (·||·) denotes the concatenation operation. ix:, iy:

denotes all the items ix ∈ Ix and iy ∈ Iy, and exix ∈ Rm/2,
eSix ∈ Rm/2, eyiy ∈ Rm/2, eSiy ∈ Rm/2 denote the domain-
specific feature and domain-shared feature embedding of
item ix and iy.

Encoding Stage. The initial embedding zxu and zyu are
assumed to follow normal priors [16]. Specifically, zxu and zyu

are modeled as:

zxu ∼ N (µψx(Xu), diag{σ2
ψx(Xu)}),

zyu ∼ N (µψy (Yu), diag{σ2
ψy (Yu)})(2.8)

Here diag{·} denotes the diagonal covariance of the normal
distribution. The function µψx(·), σ2

ψx(·), µψy (·), and
σ2
ψy (·) are implemented by multi-layer neural networks.

The reparameterization trick is utilized to enable gradient
backpropagation. Additionally, in this stage, we extract
high-dimensional domain embeddings by:

dx = gω(D
x||mean-pooling(exix:)),

dy = gω(D
y||mean-pooling(eyiy:))(2.9)

Here Dx ∈ Rm/2 and Dy ∈ Rm/2 denote learnable domain
embeddings respectively, and gω denotes the extractor im-
plemented by multi-layer neural network.

Causal Stage. Similar to the Encoding stage, we
assume that the profile embedding zu and causal embedding
exu, e

S
u , e

y
u follows normal priors as:

exu ∼ N (µψCx (zu, z
x
u, d

x), diag{σ2
ψCx

(zu, z
x
u, d

x)}),

eyu ∼ N (µψCy (zu, z
y
u, d

x), diag{σ2
ψCy

(zu, z
y
u, d

x)}),

eSu ∼ N (µψC
S
(zu), diag{σ2

ψC
S
(zu)}),

zu ∼ N (µψCz (z
x
u, z

y
u), diag{σ2

ψCz
(zxu, z

y
u)})(2.10)

The function µψCz (·), σ
2
ψCz

(·), µψCx (·), σ
2
ψCx

(·), µψCy (·), σ
2
ψCy

(·),
µψC

S
(·), and σ2

ψC
S
(·) are implemented by multi-layer neural

networks.

2.3 Training Objective In this section, we discuss
the training objective of CausalCDR, which aims to learn
the causal embedding. Our training objective considers
three main concerns: (1) Evidence Lower BOund (ELBO)
of generative view. (2) Mutual information regularizer for
profile embedding. (3) Adversarial domain classifier for
disentangled causal embedding.

ELBO of generative view: Given the mini batch B
of dataset O, We apply variational inference to solve the
log-likelihood of the joint distribution p(Xu, Yu|dx, dy).

EqB [log p(Xu, Yu|d
x, dy)] ≤ −LELBO

=EqB [Eq(zxu,zyu,zu,exu,eSu ,eyu|Xu,Yu,dx,dy)[

log
p(Xu, Yu|dx, dy, zxu, zyu, zu, exu, eSu , eyu)
q(zxu, z

y
u, zu, exu, eSu , e

y
u|Xu, Yu, dx, dy)

]](2.11)

According to the decomposition of Equation 2.2-2.5, Equa-
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tion 2.11 could be decomposed into:

LELBO =− EqB [Eqψ(exu,e
S
u |Xu,Yu,dx,dy)[log pθx(X|ex, eS , dx)]]

− EqB [Eqψ(eSu ,e
y
u|Xu,Yu,dx,dy)[log pθy (Y |ey, eS , dy)]]

+ DKL(qψ(exu|zxu, zu, dx)||p(exu|zxu, zu, dx))
+ DKL(qψ(eyu|zyu, zu, dy)||p(eyu|zyu, zu, dy))

+ DKL(qψ(eSu |zu)||p(eSu |zu)||)
+ DKL(qψ(zu|zxu, zyu)||p(zu|zxu, zyu))
+ DKL(qψ(zxu|Xu)||p(zxu|dx))
+ DKL(qψ(zyu|Yu)||p(zyu|dy))

Here DKL(·||·) denotes the KL-divergence. The first two
terms in LELBO are implemented as the reconstruction
loss, denoted by Lre, while the other terms are the KL-
divergences between the prior and posterior, denoted by
LKL. Following previous works [16, 33], we assume that all
priors follow a standard normal distribution, N (0, I).

Mutual information regularizer for profile em-
bedding: The user profile embedding zu captures user
characteristics that determines user’s both domain-specific
and domain-shared preference. We assume that zu is the
common between domain initial embeddings zxu and zyu.
To achieve this, we use mutual information to measure
the information shared between zu and the initial hid-
den embeddings zxu and zyu. The objective is defined as:
maxMI(zu, z

x
u) + MI(zu, z

y
u), where MI(·, ·) denotes mutual

information. To estimate the mutual information, we use
InfoNCE [32], which is a contrastive learning approach that
has been shown to work well for high-dimensional embed-
dings. Specifically, we define LMI loss as:

LMI = − log
exp(zu(z

x
u)
T )

Σj∈B exp(zu(zxj )
T )

− log
exp(zu(z

y
u)
T )

Σj∈B exp(zu(z
y
j )
T )

where j denotes user j in the mini-batch B. LMI aims to
maximize the dot product between zu and its corresponding
initial embedding zxu (or zyu) at the same time. This encour-
ages zu to capture common information across domains.

Adversarial domain classifier for disentangled
causal embedding: To further improve the disentangle-
ment of domain-specific and domain-shared information in
item embeddings, we propose to use a domain classifier hτ (·)
to normalize the item embeddings. Specifically, we feed the
items features into the domain classifier and obtain a prob-
ability score indicating the item’s domain membership. Our
goal is to encourage the model to learn more domain-specific
features in exix and eyiy while learning more domain-shared
features in eSix and eSiy . To achieve this, we first define the
classification loss Lcls to encourage the domain classifier to
classify items based on their domain-specific features:

Lcls = −
∑
ix∈Ix

log hτ (e
x
ix)−

∑
iy∈Iy

log(1− hτ (e
y
iy ))

where exix and eyiy are the domain-specific features of item
ix and iy, respectively. To further enhance the disentan-
glement, we introduce an adversarial loss Licls, which en-
courages the domain classifier to predict the domain label

uniformly for domain-shared feature. Licls is defined as:

Licls = −1/[
∑
ix∈Ix

log hτ (e
S
ix) +

∑
iy∈Iy

log(1− hτ (e
S
iy ))]

By minimizing both Lcls and Licls simultaneously, the
domain-specific and domain-shared features of item embed-
dings can be better separated, which ultimately improves
the disentanglement of the causal embeddings. Note that
only Lcls is used to optimize hτ (·).

The total training objective is formatted by: L =
Lre + λ1LKL + λ2LMI + λ3(Lcls + Licls), where λ1, λ2 and
λ3 are hyper-parameters that control the trade-off between
the different terms.

3 Experiment

In this section, we conduct extensive experiments to answer
the following research questions (RQ): RQ 1: How does
CausalCDR perform in the CDR task compared to base-
lines? RQ 2: How does the causal stage affect the perfor-
mance? RQ 3: How does different hyper-parameter settings
influence the performance? RQ 4: Could CausalCDR learn
the disentangled causal embedding?

3.1 Experimental settings Datasets. Our experi-
ments are conducted on four real-world datasets from Ama-
zon [31]: Elec (Electronics), Phone, Sports, and Cloth-
ing. We follow the settings used in [3, 25] and com-
bine the datasets into four CDR scenarios: Sports&Phone,
Sports&Clothing, Elec&Clothing, and Phone&Elec.

Evaluation. We evaluate the performance of methods
using the Leave-One-Out [3]. For each target user u, we
generate a list of 1000 items, including 1 ground truth item
and 999 negative items. We then calculate the scores of
these items using proposed method, and generate a top-10
list based on the scores. And we use Hit Ratio (HR) and
NDCG [42] to evaluate the performance.

Baselines. We compare CausalCDR with SOTA
single-domain and cross-domain baselines. Single-Domain
Methods: (1)MF [13] is a basic method which learns
user and item embedding to reconstruct interaction ma-
trix. (2)NCF [10] is a deep neural network version of
MF. Cross-Domain Methods: (1)CoNet [12] is a transla-
tion method, which designs a cross unit to transfer knowl-
edge between domains. (2)DARec [48] is a translation and
disentangling mixed method, which learns common prefer-
ence from all domains, and decodes interaction using dif-
ferent decoders. (3)DDT [19] is a translation method de-
signing a latent orthogonal mapping function to transfer
users preference. (4)DML [20] is a modified version of
DDT, which introduces dual metric learning. (5)ETL [6]
is a translation method, which combines the embedding
from different domains to decode interaction. (6)IPS [21]
is a alignment method, which treats domain as a type of
bias and aligns different domains by de-biasd embedding.
(7)SITN [34] is a alignment method, which aligns differ-
ent domains by contrasting instance-instance and instance-
cluster. (8)CausalInt [41] is a disentangling method, which
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Table 1: Performance comparison of different methods on four CDR scenarios.

Dataset Metrics@10
Single-Domain Cross-Domain
MF NMF CoNet DARec DML DDT ETL IPS SITN CausalInt CausalCDR

Sports
HR 0.0352 0.0654 0.1344 0.162 0.1493 0.1514 0.0717 0.1312 0.1498 0.1493 0.1939

NDCG 0.0177 0.0331 0.0714 0.0912 0.0808 0.0809 0.0429 0.0689 0.0802 0.0795 0.1118

Phone
HR 0.053 0.0815 0.1595 0.1895 0.171 0.1723 0.1353 0.146 0.1705 0.1688 0.2331

NDCG 0.0253 0.0422 0.0857 0.0996 0.0959 0.096 0.0652 0.0752 0.0945 0.0944 0.1314

Sports
HR 0.0492 0.0476 0.1125 0.1267 0.1366 0.1384 0.1063 0.1197 0.138 0.1337 0.1744

NDCG 0.0262 0.0223 0.0571 0.0694 0.0743 0.0749 0.0488 0.0631 0.0743 0.0711 0.0969

Clothing
HR 0.0477 0.0528 0.1141 0.1186 0.1517 0.1508 0.0842 0.1306 0.1509 0.1493 0.1735

NDCG 0.0252 0.0261 0.0593 0.0641 0.0828 0.0824 0.0485 0.0733 0.0825 0.0821 0.0982

Elec
HR 0.143 0.104 0.2008 0.1913 0.2372 0.2368 0.1903 0.1007 0.2355 0.2346 0.2562

NDCG 0.0818 0.0521 0.1117 0.1111 0.1393 0.1393 0.1046 0.0577 0.1381 0.1379 0.1523

Clothing
HR 0.0469 0.0466 0.1015 0.102 0.1396 0.1404 0.0896 0.0344 0.1399 0.1388 0.1597

NDCG 0.0249 0.023 0.0528 0.0561 0.0764 0.0764 0.0475 0.0187 0.0765 0.0759 0.0889

Phone
HR 0.0516 0.1071 0.1161 0.2126 0.2071 0.2063 0.1383 0.1805 0.2059 0.2052 0.2759

NDCG 0.0254 0.0552 0.0599 0.1114 0.1095 0.1093 0.068 0.0916 0.11 0.1083 0.1539

Elec
HR 0.0625 0.0992 0.177 0.1805 0.2098 0.2086 0.1504 0.1891 0.202 0.2086 0.2398

NDCG 0.0326 0.0514 0.0994 0.1052 0.1214 0.1214 0.0801 0.1061 0.1157 0.1184 0.1426

5

(a) 𝑳𝑲𝑳’s weight 𝝀𝟏 (c) 𝑳𝒄𝒍𝒔&𝑳𝒊𝒄𝒍𝒔’s weight 𝝀𝟑(b) 𝑳𝒄𝒍𝒔&𝑳𝒊𝒄𝒍𝒔’s weight 𝝀𝟐
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Figure 3: Performance comparison under different hyper-parameters

Table 2: Performance comparison of different variants
on Elec&Clothing

Variants
Elec Clothing

HR NDCG HR NDCG
CausalCDR 0.2562 0.1523 0.1597 0.0889
w/o. zu 0.2436 0.1432 0.1499 0.0822

w/o. zu&zx,yu 0.1933 0.111 0.0893 0.0514
w/o. zu&zx,yu &dx,y 0.1827 0.103 0.0945 0.0542

CausalCDR-translation 0.1948 0.1114 0.1129 0.066
CausalCDR-isolated 0.1796 0.1008 0.1122 0.0651

Table 3: Metrics of K-means clustering
ARI ↑ AMI ↑

zu-e
x
u zu-e

y
u zu-e

S
u zu-e

x
u zu-e

y
u zu-e

S
u

K=4 0.3609 0.2635 0.5741 0.4799 0.3753 0.6090
K=8 0.3202 0.2856 0.4793 0.4927 0.4428 0.6103
K=16 0.3838 0.2884 0.3543 0.5714 0.4957 0.5846

disentangles the domain-shared embedding from different
domains and transfers other domains’ knowledge to target
domain.

Implementation Details. For all methods, the com-
mon hyper-parameters are listed as follows: the initializing
embedding dimension m is fixed as 128, the mini-batch size
|B| is fixed as 512, the learning rate is fixed as 0.001, the L2
regularization coefficient is fixed as 0.0005, the cross entropy
is used as reconstruction loss and the Adam optimizer [15] is
used to update all parameters. We train all models with 400
epochs for convergence, and evaluate the model prediction
scores every 10 epochs. And the hyper-parameters λ1, λ2, λ3

of CausalCDR are set 1, 0.1, 4.

3.2 Performance Comparisons (RQ1) We con-
duct experiments on four CDR scenarios, and the results
are shown in Table 1. From the experiment results, we
get the following observations: (1) CausalCDR significantly
outperforms all strong baselines. For instance, in scenario
Sports&Phone, CausalCDR outperforms the best baseline
DARec by 19.69% on HR and 22.59% on NDCG for the
Sports domain, and outperforms it by 23.01% on HR and
31.93% on NDCG for the Phone domain. (2) In most scenar-
ios, cross-domain methods outperform single-domain meth-
ods. However, IPS performs worse in the Elec&Clothing
scenarios, possibly because it introduces noise information
during alignment.

3.3 Effectiveness of Causal Stage (RQ2) To ver-
ify the effect of the causal stage, we conducted an ab-
lation study by removing components of the causal stage
and designing the following variants: (1) CausalCDR w/o.
zu removes zu so that the causal embedding is inferred
by: exu = ψCx (z

x
u, d

x), eyu = ψCy (z
y
u, d

x), eSu = ψCS (z
x
u, z

y
u).

(2) CausalCDR w/o. zu&z
x,y
u removes zu, z

x
u, and zyu

so that the causal embedding is inferred by: exu =
ψCx (Xu, d

x), eyu = ψCy (Yu, d
x), eSu = ψCS (Xu, Yu). (3) Causal-

CDR w/o. zu&z
x,y
u &dx,y removes zu, z

x
u, z

y
u, d

x, and dy so
that the causal embedding is inferred by: exu = ψCx (Xu), e

y
u =

ψCy (Yu), e
S
u = ψCS (Xu, Yu). (4) CausalCDR-translation re-

moves zu, z
x
u, z

y
u, d

x, dy, and eSu so that the model de-
generates into translation methods. The causal embedding
is inferred by: exu = ψCx (Xu, Yu), e

y
u = ψCy (Xu, Yu). (5)

CausalCDR-isolated denotes single-domain method. In this
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(a) CausalCDR (b) IPS
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Phone-specific

Shared

Sport-specific
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Sport-biased

Phone-biased

Sport-unbiased

Phone-unbiased

(c) CausalInt

Figure 4: Visualization of learned embeddings on Sports&Phone scenario

case, the model degenerates into isolated VAE. The causal
embedding is inferred by: exu = ψCx (Xu), e

y
u = ψCy (Yu).

The results of different variants in the four CDR scenar-
ios are shown in Table 2. The performance decrease of the
variants that remove components of the causal stage veri-
fies the effectiveness of the proposed causal stage. Further-
more, variants that model cross-domain information outper-
form the single-domain variant, CausalCDR-isolated, which
demonstrates that the cross-domain methods benefit from
the aggregation of different domains.

3.4 Effect of hyper-parameter settings (RQ3)
In this section, we investigate the effect of hyper-parameters:
λ1 for LKL weight, λ2 for LMI weight, and λ3 for Lcls and
Licls weight. The results for Sports&Phone and Phone&Elec
scenarios are shown in Figure 3. Figure 3(a) shows that the
best value for λ1 is 1. λ1 balances the reconstruction and
disentanglement of the embeddings. A too large value of λ1

may harm the informativeness of the model, and a too small
value may hurt the robustness of the probabilistic model.
Figures 3(b) and (c) show that CausalCDR is insensitive to
the settings of λ2 and λ3, as the performance fluctuations
are small under different settings. The optimal values for λ2

and λ3 are 0.1 and 4, respectively.

3.5 Study on the learned embedding (RQ4)
Visualization of disentangled causal embedding: In
this section, we validate the disentangled embedding by
visualization. We use t-SNE [37] to visualize eSu , e

x
u, e

y
u of

CausalCDR, the biased and unbiased user embedding of IPS,
domain-specific and domain-shared embedding of CausalInt
on Sports&Phone scenario.

For IPS shown in 4(b), both biased and unbiased embed-
ding reside in the same embedding space, which may fail to
capture domain-specific information. For CausalInt shown
in Figure 4(c), the domain-specific and domain-shared em-
beddings exhibit clustered distributions. However, domain-
shared embeddings learned form different domains are far
from one another, leading to possible problems in capturing
true domain-shared preferences. In contrast, the causal em-
beddings learned by CausalCDR, shown in Figure 4(a), are
well-distributed amongst its clusters. The domain-shared
embedding is inferred from both domains, avoiding the is-
sue of domain-shared embeddings learned from different do-
mains locating in different clusters. Furthermore, as the
domain-shared embedding captures common preferences of

both domains, it is close to both Sports-specific and Phone-
specific.

Correlation analysis between profile embedding
and causal embedding: In this section, we assess whether
the profile embedding has effectively captured the user’s
profile. We conduct K-means clustering [18] on zu, e

x
u, e

y
u,

and eSu of the Sports&Phone scenario. The cluster label of zu
is treated as the true user label. The Adjusted Rand Index
(ARI) and Adjusted Mutual Information (AMI) are used as
metrics to evaluate the clusters of exu, e

y
u, and e

S
u . ARI and

AMI values range from -1 to 1, and a higher value indicates
a stronger correlation between the two embeddings.

As presented in Table 3, all metrics are positive under
different K settings, demonstrating that all causal embed-
dings are correlated with the profile embedding zu. When
two users have similar profile embeddings, they tend to
exhibit similar preferences for both domain-specific and
domain-shared preferences. This finding supports our claim
that the isolated domain-specific preference limits the per-
formance of CDR.

4 Related Work

4.1 Cross-domain Recommendation Cross-
domain recommendation (CDR) is a solution of data
sparsity by utilizing information across domains to im-
prove recommendation performance [5, 48]. Existing CDR
methods can be classified into three categories: translation,
alignment, and disentanglement.

Translation methods facilitate explicit information
transfer between domains [12,19]. For example, [6] proposes
a dual Variational AutoEncoder model, which combines hid-
den embeddings from different domains to decode interac-
tions on each domain.

Alignment methods employ isolated models and
transfer information between domains via alignment mecha-
nisms such as contrastive learning, optimal transport [21,34].
For instance, [26] trains VAE models with Gaussian mixture
model priors on each domain and aligns the priors via opti-
mal transport.

Disentanglement methods aim to separate informa-
tion into domain-specific and domain-shared parts so that
the shared part can be applied across all domains [4,35,41].
[3] disentangles user preferences into domain-shared and
domain-specific preferences.

Our proposed method is closely related to disentangle-
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ment approaches. In contrast, we incorporate causality into
the CDR scenario to achieve better disentanglement. Addi-
tionally, to tackle the isolated preference issue, we model a
common cause of domain-shared and domain-specific pref-
erence, the user profile information, which can be treated as
an alignment component.

4.2 Disentangled representation learning Disen-
tangled representation learning (DRL) seeks to disentangle
informative factors of variation in data [27]. Recently, DRL
has garnered significant attention due to favorable explain-
ability [45, 49]. In this work, we apply a VAE-based DRL
approach to recommendation systems.

VAE-based DRL methods can be broadly classified
into unsupervised and supervised approaches. Unsupervised
methods aim to disentangle informative factors of variation
by re-weighting [11] and decomposing [2, 14] the ELBO of
VAE. Despite the potential benefits, their performance is
often limited due to a lack of supervision [27]. Recent
research has focused more on supervised approaches [44,46],
such as group-based methods [1] and causal-based methods
[17,36]. Our proposed method builds upon CausalVAE [46],
a causal-enhanced VAE-based DRL approach, but further
extends this approach to model causality in CDR scenario.

DRL for Recommendation Systems DRL has re-
cently been introduced to recommendation systems as a
means of improving representation learning [24, 38], which
can be divided into single-source and multi-source disentan-
glement methods. Single-source methods focus on disen-
tangling the interaction information into multi-interests of
users [29, 30, 40], or disentangling user conformity and true
interest [50, 51]. Multi-source methods aim to disentangle
different sources of information to obtain better generaliza-
tion and eliminate multicollinearity [3, 39]. Different from
existing studies, we exploit DRL to solve CDR problem, dis-
entangling user’s domain-shared and domain-specific prefer-
ence based on user behaviors in different domains.

5 Conclusion

In this paper, we aim to address the issue of isolated domain-
specific preferences in existing CDR methods and proposed
CausalCDR, a novel disentangled method for cross-domain
recommendation. CausalCDR models causality of variables
in CDR and implements it using a generative view. Exten-
sive experiments demonstrate the effectiveness of our pro-
posed method in improving recommendation performance.

In future work, we plan to explore how to handle partial
overlap users and non-overlap users in CDR. Additionally,
we aim to develop a more general causality-based approach
for CDR that can be applied to a wide range of domains
beyond those studied in this paper.
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